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We present a new technique to continuously measure and compensate the global difference coupling
coefficient through the continuous measurements of eigenmode projection parameters, using a high
resolution phase-locked-loop tune meter. First, four eigenmode projection parameters are defined as the
observables for weak difference coupling. Then, their analytical expressions are obtained using the strict
matrix treatment and the Hamiltonian perturbation theory of linear coupling. From these parameters, the
complex global coupling coefficient can be fully determined and compensated. This method was
successfully demonstrated in the Relativistic Heavy Ion Collider (RHIC) 2006 run.
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I. INTRODUCTION

The skew quadrupole strength scan is the conventional
method to measure and correct global coupling [1–5].
However, it is unsuitable for coupling measurements and
corrections during ramping. As a logical extension, the
skew quadrupole modulation technique was proposed to
deal with global decoupling on the ramp, with modulation
of either coupling amplitude or coupling angle [6–9]. To
track the fast tune changes, a phase-locked-loop (PLL)
tune meter [10–13] was used.

In the previously employed above methods for coupling
measurements and corrections, the fractional eigentune
split is used as the observable. This has been proved to
be less sensitive when the accelerator is working close to
the difference coupling resonance line. To detect the mini-
mum of the fractional eigentune split, additional coupling
sources must be introduced into the accelerator. All of the
above methods are used in feed-forward mode. In applying
tune feedback without decoupling feedback on the RHIC
ramp, we sometimes experienced a mix-up of PLL eigen-
tune tracking under the coupled situation [7,8]. To solve
this problem, thereby ensuring a robust PLL tune measure-
ment system, continuous coupling measurements and cor-
rections are needed [14,15].

To improve coupling measurements, during the RHIC
2004 run, the PLL was reconfigured to measure the pro-
jections of both eigenmodes onto x and y axes. In addition,
a formalism was developed to properly parametrize this
measurement [15,16]. According to this formalism, the
global coupling coefficient can be determined from the
measurements of the eigenmode projection parameters.

In the following, we first define four eigenmode projec-
tion parameters for the coupled betatron motion. Then,
their analytical expressions are obtained via both the strict
matrix treatment and the Hamiltonian perturbation theory.
From the measurements of these parameters, the complex
global coupling coefficient can be fully determined and
compensated. This method was successfully demonstrated
in the RHIC 2006 run. The continuous coupling measure-
ment yielded a global decoupling feedback along with a
robust tune feedback.

II. EIGENMODE PROJECTION PARAMETERS

A. Definitions

At one observation point in the ring, the beam center’s
�x; y� coordinates of a free oscillation motion or of a
coherently excited motion are given by

 

� xn � AI;x cos�2�QI�n� 1� ��I;x� � AII;x cos�2�QII�n� 1� ��II;x�

yn � AI;y cos�2�QI�n� 1� ��I;y� � AII;y cos�2�QII�n� 1� ��II;y�;
(1)

*Electronic address: yluo@bnl.gov

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 9, 124001 (2006)

1098-4402=06=9(12)=124001(6) 124001-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.9.124001


where QI and QII are the eigentunes with coupling
sources. Ai;z and�i;z, i � I; II, z � x; y, are the eigenmode
i’s projection amplitude and projection phase onto z axis.
Ai;z are non-negative numbers.

Besides the fractional eigentune split, we define four
eigenmode projection parameters as the coupling observ-
ables. RI and RII are the ratios of eigenmode projection
amplitudes between the horizontal and vertical projections,

 RI �
AI;y
AI;x

; (2)

 RII �
AII;x
AII;y

: (3)

��I and ��II are the eigenmode projection phase differ-
ences between the horizontal and vertical projections,

 ��I � �I;y ��I;x; (4)

 ��II � �II;x ��II;y: (5)

Here, we assumed that eigenmodes I and II are related to
the horizontal and vertical planes, respectively. Therefore,
if there is no coupling in the accelerator, RI � RII � 0.

B. Simulation

Before giving the analytical expressions to these eigen-
mode projection parameters, we carry out numerical simu-
lations to check their behavior in a 2D decoupling scan,
using a simplified accelerator model of the RHIC’s linear
optics.

The uncoupled tunes are set to �Qx;0; Qy;0� �

�28:22; 29:23�. Three thin-lens skew quadrupoles are equi-
distantly inserted into the ring model. The first skew quad-
rupole’s strength is set to �ksdl�1 � 0:005 m�1 to introduce
the coupling. The other two skew quadrupoles are used for
scanning. Based on the optics model, the global coupling
correction strengths are �ksdl�2;3 � 0:005 m�1.

Figure 1 shows the eigentune splits in the 2D scan, and
Fig. 2 shows the projection amplitude ratios RI;II. The
projection ratios are much more sensitive than the eigen-
tune split while scanning close to the globally uncoupled
point.

Figure 3 shows the projection phase difference ��I,
where ��I remains constant if the direction of the decou-
pling scan points toward the globally uncoupled point. We
also found that there is a sudden � phase jump in ��I
when the scanning crosses the uncoupled point. In the
following, we will show that ��I actually is the phase of
the global difference coupling coefficient C�.

More detailed simulations are given in [16–18]. In [17],
comparisons of the projection parameters between three
different approaches, together with the numerical simula-
tions, are presented.
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FIG. 1. (Color) Eigentune split in a 2D decoupling scan.
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FIG. 2. (Color) Projection amplitude ratios RI;II in a 2D decou-
pling scan.

 

     200
     180
     160
     140
     120
     100
      80
      60
      40
      20
       0

     -20
     -40
     -60
     -80
    -100
    -120
    -140

-0.015-0.01-0.005 0 0.005 0.01 0.015

(ks dl)2

-0.015
-0.01

-0.005
 0

 0.005
 0.01

 0.015

(ks dl)3

-150
-100
-50

 0
 50

 100
 150
 200
 250

∆ φΙ

FIG. 3. (Color) Projection phase difference ��I in a 2D decou-
pling scan.
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III. ANALYTICAL SOLUTIONS

In this section, we give the analytical expressions to the eigenmode projection parameters. The approach with strict
matrix treatment of linear coupling is presented, followed by the Hamiltonian perturbation approach.

A. Strict approach with action-angle parametrization

With the action-angle parametrization of linear coupling [19,20], a single particle’s motion is represented by

 

x
x0

y
y0

0
BBB@

1
CCCA � P �

�������
2JI
p

cos�I

�
�������
2JI
p

sin�I���������
2JII
p

cos�II

�
���������
2JII
p

sin�II

0
BBB@

1
CCCA; (6)

where JI;II, �I;II are the actions and betatron phases of the two eigenmode motions, respectively. P can be numerically
calculated from the eigenvectors of the one-turn 4	 4 transfer map. It can also be expressed in the Twiss and coupling
parameters defined in Edwards-Teng’s parametrization:

 P �

r
������
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p
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�������
�II
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�II
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�II
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Expanding Eq. (6) gives

 

� x � p11

�������
2JI
p

cos�I � p13

���������
2JII
p

cos�II � p14

���������
2JII
p

sin�II

y � p31

�������
2JI
p

cos�I � p32

�������
2JI
p

sin�I � p33

���������
2JII
p

cos�II:
(8)

Therefore,

 

8>><
>>:
RI �

�������������
p2

31�p
2
32

p

p11

RII �
�������������
p2

13�p
2
14

p

p33
;

(9)

 

8<
:

��I � arctan�p32

p31
�

��II � arctan�p14

p13
�;

(10)

or, in the Twiss and coupling parameters, according to
Eq. (7),

 

8>>><
>>>:
RI �

�������������������������������������
�Ic

2
22�2�Ic22c12��Ic

2
12

p

r
����
�I
p

RII �
����������������������������������������
�IIc2

11�2�IIc11c12��IIc2
12

p

r
�����
�II
p ;

(11)

 

8<
:

��I � arctan� �c12

�Ic12��Ic22
�

��II � arctan� c12

��IIc12��IIc11
�:

(12)

B. Perturbation approach with the Hamiltonian
perturbation theory

The Hamiltonian perturbation theory of weak linear
difference coupling gives the isolated linear difference
coupling Hamiltonian as [4]

 H2 � jC�j
����������
axay
p

cos��x ��y � �’� ��; (13)

where ax;y and �x;y are the coupled motion’s amplitudes
and phases, respectively. � is the fractional uncoupled tune
split, � � Qx;0 �Qy;0 � p. The linear difference coupling
coefficient C� is defined as

 C� � jC�jei� �
1

2�

Z L

0

������������
�x�y

q
ksei��x��y�2��s=L�dl;

(14)

where�x;y are the uncoupled betatron amplitude functions,
�x and�y are the uncoupled betatron phase advances, ks is
individual skew quadrupole’s strength, L is the ring cir-
cumference, and s is the distance between the skew qua-
druple and the reference point to calculate the coupling
coefficient.

After some algebraic calculations, a single particle’s
motion is given by [16]
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� x�s� � ���������
2�x
p

fa cos��x � ��� �=2�’� �=2�� � b cos��x � ����=2�’� �=2��g

y�s� �
���������
2�y

p
fc cos��y � ��� �=2�’� �=2�� � d cos��y � ����=2�’� �=2��g;

(15)

 � � 1
2

������������������������
�2 � jC�j2

q
; (16)

 

8<
:

c
a �

jC�j
2���

b
d � �

jC�j
2��� ;

(17)

where a, b, c, and d are decided by the initial conditions.
There are two eigentunes from Eq. (15),

 

8<
:
QI � Qx;0 �

1
2��

1
2

������������������������
�2 � jC�j2

p
QII � Qy;0 �

1
2��

1
2

������������������������
�2 � jC�j2

p
;

(18)

with the fractional eigentune split given by

 jQI �QII � pj �
������������������������
�2 � jC�j2

q
: (19)

Comparing Eq. (15) to Eq. (1) and considering Eqs. (2)–
(5), one obtains

 

8>><
>>:
RI �

����
�y
�x

q
jC�j����������������

�2�jC�j2
p

��

RII �
����
�x
�y

q
jC�j����������������

�2�jC�j2
p

��
;

(20)

 

�
��I � �

��II � �� �:
(21)

C. Interpretations

The action-angle parametrization approach gives the
strict expressions for the projection amplitude ratios and
the projection phase differences. It can be used to numeri-
cally calculate the four observables. However, for weak
linear difference coupling, the analytical expressions
Eq. (19)–(21) from the Hamiltonian perturbation theory
are more convenient and straightforward for interpreting
RI;II and ��I;II.

According to Eq. (19), the fractional eigentune split
jQI �QII � pj is determined by the fractional uncoupled
tune split � and the amplitude of coupling coefficient jC�j.
The minimum fractional eigentune split is given by the
fractional uncoupled tune split when the coupling coeffi-
cient C� is completely compensated.

According to Eq. (20), knowing only the measured
eigentune split and RI, RII, the uncoupled tune split �
and the coupling coefficient amplitude jC�j can be deter-
mined. Following Eqs. (19) and (20), we obtain

 jC�j �
2
������������
RIRII
p

1� RIRII
jQI �QII � pj; (22)

 � �
1� RIRII
1� RIRII

�QI �QII � p�: (23)

The fractional uncoupled tunes Qx;y;0 are

 Qx;0 �
QI �QII

2
�

�

2
; (24)

 Qy;0 �
QI �QII

2
�

�

2
: (25)

Here, we assumed that the horizontal fractional tune is
higher than the vertical fractional tune.

According to Eq. (21), the phase difference of the cou-
pling coefficient C� is given by ��I. From Eq. (14), the
phase � of the coupling coefficient is determined only by
the strength combination ratios of the skew quadrupoles.
Therefore if ��I can be measured, then the right decou-
pling direction is known.

In summary, RIRII together with the eigentune split
jQI �QII � pj determines the residual coupling coeffi-
cient’s amplitude, while ��I reveals the residual coupling
coefficient’s phase.

IV. APPLICATION TO THE RHIC RINGS

In the following paragraphs, the eigenmode projection
parameters are obtained using the RHIC PLL tune meter. A
detailed description of the PLL setup for this measurement
are given in our other paper, which also presents the
successful use of decoupling and tune feedbacks on the
RHIC ramps [21].

A. Global decoupling scheme in the RHIC

Each RHIC ring has three correction skew quadrupole
families, F1, F2, and F3. The contributions to the coupling
coefficient from each skew quadrupole in one family are
almost the same due to the sixfold lattice structure. The
coupling contributions from these three skew quadrupole
families are about 120
 apart when they are powered with
the same strength and proper polarities. In our study, we
combined F1 and F3 with the same strength to produce a
family F13 whose contribution to the total coupling coef-
ficient is approximately orthogonal to that from family F2.

Knowing the coupling coefficient C� from the measure-
ments of the eigenmode projection parameters, the global
decoupling strengths for these two orthogonal families can
be calculated using the accelerator optics model,

 ��ksdl�F2 � �jC
�j cos����F2� � kF2; (26)

 ��ksdl�F13 � �jC�j cos����F13� � kF13; (27)
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where jC�j and � are the residual coupling coefficient’s
amplitude and phase measured at the observation point.
�F2 and �F13 are the angles contributed to the global
coupling coefficient at the observation point by families
F2 and F13, respectively, while kF2 and kF13 are the scaling
factors between the skew quadrupole strengths and the
coupling coefficient for families F2 and F13, respectively.
All of them can be obtained based on the ideal optics
model.

B. PLL I/Q data processing

The four eigenmode projections onto the x and y axes
are continuously measured through a phase-synchronous I/
Q demodulation in the PLL tune measurement system. If
the eigentunes are well tracked, the phases�I;x and�II;y in
Eq. (1) from PLL tune meter are close to zero. Actually, for
each projection in Eq. (1), data sets of �Ii;z; Qi;z� are deliv-
ered from the PLL system at about 300 Hz.

The projection amplitude and phase for one projection is
given by

 Ai;z �
��������������������
I2
i;z �Q

2
i;z

q
; (28)

 �i;z � arctan 2�Qi;z; Ii;z�: (29)

Knowing Ai;z and �i;z, according to Eqs. (2)–(5), the
eigenmode projection parameters are calculated.

C. A beam experiment test example

The measurement of the eigenmode projection ampli-
tude ratio was verified in the RHIC 2005 run with the
245 MHz PLL system reported in [15]. Knowing only
RIRII and the eigentune split jQI �QII � pj, we can
calculate the residual coupling coefficient’s amplitude
jC�j, the uncoupled tune split �, and the uncoupled tunes
Qx;y;0.

In the startup of the RHIC 2006 run, with the base-band
PLL system [13], the measurement of the projection phase
was confirmed. Then, with the measurements of the four
eigenmode projection parameters, together with the frac-
tional eigentune split, both the global coupling’s amplitude
and phase are determined and global decoupling is
possible.

In the following, we present one example of a beam
experiment. We first introduced ��ksdl�2 � �2	
10�4 m�1 into a well decoupled RHIC Blue ring at injec-
tion. The left part in the top plot of Fig. 4 shows that the
extra coupling source pushed the eigentunes farther, while
the left part in the bottom plot of Fig. 4 shows the required
decoupling strengths were ��ksdl�2 � 7	 10�5 m�1,
��ksdl�1;3 � 1	 10�4 m�1. These strengths were calcu-
lated based on Eqs. (28) and (29) with the coupling coef-
ficient through the measurements of eigenmode projection
parameters. When we set these required coupling correc-

tion strengths, the eigentunes moved back and the required
decoupling strengths became almost zero.

The right part of Fig. 4 shows the result when we
repeated this test but with different initial coupling sources.
We introduced ��ksdl�3 � �2	 10�4 m�1 into the
above well decoupled accelerator. The required
decoupling strengths were then ��ksdl�2 � �1	
10�4 m�1, ��ksdl�1;3 � 1	 10�4 m�1. After setting
them, the ring returned to the globally uncoupled state.

The top plot of Fig. 5 shows the measured fractional
eigentunes QI;II and the calculated fraction uncoupled
tunes Qx;y;0 during these tests. It reveals that the uncoupled
tunes were almost kept constant when changing the set-
tings of the skew quadrupole strengths. When the accel-
erator is globally decoupled, the eigentunes and the
uncoupled set tunes merged. This can be interpreted ac-
cording to Eq. (18) and (19). The bottom plot of Fig. 5
shows the fractional eigentune split jQI �QII � pj, the
calculated uncoupled tune split jQx;0 �Qy;0 � pj, and the
coupling coefficient’s jC�j in the above tests.
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V. DISCUSSION

The projection phase, ��I, plays an important role in
correcting the global coupling. Its measurement is the basis
of the global decoupling feedback, as it reveals the right
strength combination ratios of the existing correction skew
quadrupoles to compensate the residual coupling coeffi-
cient. RIRII determines the decoupling depth.

In the RHIC beam experiment, we assumed two or-
thogonal skew quadrupole families F2 and F13. For cor-
rection families which are not strictly orthogonal,
iterations of the above corrections may be needed.
However, having such correction families does not greatly
affect the operation of the decoupling feedback.

The above analytical solutions are based on a single
particle’s free oscillation or coherent driven oscillation.
Thus, they are also suitable for global decoupling with
turn-by-turn dual-plane beam position monitor data.

In [22], a Hamiltonian approximation approach to the
driven beam’s response was derived through the beam
transfer function. It also showed that the response of the
vertical phase difference due to coherent driving in the
horizontal plane gives the coupling coefficient’s phase.

VI. CONCLUSION

We presented a new technique to continuously measure
and compensate the global difference coupling coefficient
via the continuous measurement of eigenmode projection
parameters, using a high resolution phase-locked-loop
(PLL) tune meter. The analytical interpretations to the
four eigenmode projection parameters are obtained with
both strict matrix treatment and Hamiltonian perturbation
theory of linear coupling. Based on measurements of the
eigenmode projection parameters, the complex global cou-
pling coefficient can be fully determined and compensated.
This technique was successfully demonstrated in the RHIC
2006 run and yielded a global decoupling feedback along
with a robust tune feedback.
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